Search results

Search for "ballistic transport" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • Fourier model. Keywords: ballistic transport; kinked nanowire; molecular dynamics; phonon Monte Carlo; thermal transport; Introduction The thermal conductivity of semiconductor nanostructures is of great interest because of potential applications in a wide variety of fields, such as thermal control
  • . Systems where such transport is important are said to have significant ballistic transport compared to the classical scenario, that is, diffusive transport. Ballistic transport can be impacted by features of the system, such as surfaces, edges, defects, and inclusions [7][8][9]. Consequently, the effect
  • angling of the wire should result in reduced quantities of unrestricted ballistic transport. Gradually increasing the angle effectively reduces the quantity of unobstructed line of sight (LoS) paths from one end of a nanowire to the other. We use molecular dynamics (MD) [25] to study an atomistic approach
PDF
Album
Full Research Paper
Published 15 May 2023

Apparent tunneling barrier height and local work function of atomic arrays

  • Neda Noei,
  • Alexander Weismann and
  • Richard Berndt

Beilstein J. Nanotechnol. 2018, 9, 3048–3052, doi:10.3762/bjnano.9.283

Graphical Abstract
  • effectively raises the energy required to overcome the potential barrier between the tip and the sample. In the context of the scanning tunneling microscope, the idea of an increased barrier due to lateral confinement has been attributed to J. Tersoff in [27]. Lateral confinement plays a key role in ballistic
  • transport through nanoscale constrictions [32] and was suggested to affect the apparent barrier height in single-atom contacts [33]. Atomistic transport calculations have been performed for Au contacts in [34]. Symmetric junctions comprised of two (001) surfaces, either planar or with an adatom or with a
PDF
Album
Letter
Published 17 Dec 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • describe the electromigration process by a constant monitoring of the electrical conductance. We analyze the different signatures leading to the formation of the gap including the occurrence of quantized conductance steps characteristic of a ballistic transport of electrons. We detail the balanced
PDF
Album
Full Research Paper
Published 11 Jul 2018

Tunable fractional Fourier transform implementation of electronic wave functions in atomically thin materials

  • Daniela Dragoman

Beilstein J. Nanotechnol. 2018, 9, 1828–1833, doi:10.3762/bjnano.9.174

Graphical Abstract
  • graphene [9]. The configuration proposed for FrFT implementation requires a ballistic transport regime of charge carriers. Graphene could be of particular interest for this application because it has the longest, micrometer-scale, room-temperature mean free path of all known materials [10]. The proposed
PDF
Album
Full Research Paper
Published 19 Jun 2018

Josephson effect in junctions of conventional and topological superconductors

  • Alex Zazunov,
  • Albert Iks,
  • Miguel Alvarado,
  • Alfredo Levy Yeyati and
  • Reinhold Egger

Beilstein J. Nanotechnol. 2018, 9, 1659–1676, doi:10.3762/bjnano.9.158

Graphical Abstract
  • reported below also apply to those settings. Available materials are often of sufficiently high quality to meet the conditions for ballistic transport, and we will therefore neglect disorder effects. In view of the large amount of published theoretical works on the Josephson effect in such systems, let us
PDF
Album
Full Research Paper
Published 06 Jun 2018

High Ion/Ioff current ratio graphene field effect transistor: the role of line defect

  • Mohammad Hadi Tajarrod and
  • Hassan Rasooli Saghai

Beilstein J. Nanotechnol. 2015, 6, 2062–2068, doi:10.3762/bjnano.6.210

Graphical Abstract
  • %. Nevertheless, as seen in Figure 3c, the on/off current increased by a factor of 1.30 (30% improvement). Due to ballistic transport, the transconductance remains constant when the channel length is reduced. Although in the defect channel transconductance is reduced because of a smaller transition probability
PDF
Album
Full Research Paper
Published 23 Oct 2015

Graphene quantum interference photodetector

  • Mahbub Alam and
  • Paul L. Voss

Beilstein J. Nanotechnol. 2015, 6, 726–735, doi:10.3762/bjnano.6.74

Graphical Abstract
  • scattering have been neglected here because we are assuming phase coherent, ballistic transport and the mean free path for electrons is greater than the device length [25]. Knowing the electron and hole density functions (Gn and Gp) and the rate at which electrons are scattered in and out of the device ( and
  • particular wave shapes of the electron in the 1st longitudinal resonant state and 2nd longitudinal resonant state within the first transverse mode in MZI structure contribute to the high absorption rate. Experimentally, ballistic transport has been shown in graphene nanoribbons and MZI interferometer
PDF
Album
Full Research Paper
Published 12 Mar 2015

Chains of carbon atoms: A vision or a new nanomaterial?

  • Florian Banhart

Beilstein J. Nanotechnol. 2015, 6, 559–569, doi:10.3762/bjnano.6.58

Graphical Abstract
  • predict that the electrical properties of chains with an even number of atoms are different from those with an odd number [46][47][48][49]. Generally, even-number chains should have a higher conductivity. In short chains, however, ballistic transport has only been predicted for chains with odd numbers of
PDF
Album
Review
Published 25 Feb 2015

Electrical contacts to individual SWCNTs: A review

  • Wei Liu,
  • Christofer Hierold and
  • Miroslav Haluska

Beilstein J. Nanotechnol. 2014, 5, 2202–2215, doi:10.3762/bjnano.5.229

Graphical Abstract
  • measured at a low source–drain bias, the resistance contributed from the device channel plays a minor role in the total resistance when approaching ballistic transport. The total resistance (Rtot) is determined as shown in Equation 2. Based on the assumption that each contact is of equal quality and the
PDF
Album
Review
Published 21 Nov 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • , which can furthermore be tuned through control of the dopant concentration, but in theory produce quasi-ballistic transport of electrons in the undoped sublattice, both important qualities for any graphene device to be used competetively in future technology. We outline current experimental techniques
  • bombardement [63], which could be combined with the high temperature annealing process discussed previously. The experimental realisation of spin-polarized transport should also be pursued, and could spark additional interest in this research area beyond quasi-ballistic transport. Investigation of the effects
PDF
Album
Review
Published 05 Aug 2014

Analytical development and optimization of a graphene–solution interface capacitance model

  • Hediyeh Karimi,
  • Rasoul Rahmani,
  • Reza Mashayekhi,
  • Leyla Ranjbari,
  • Amir H. Shirdel,
  • Niloofar Haghighian,
  • Parisa Movahedi,
  • Moein Hadiyan and
  • Razali Ismail

Beilstein J. Nanotechnol. 2014, 5, 603–609, doi:10.3762/bjnano.5.71

Graphical Abstract
  • transport at room temperature give rise to the potential applicability in electrolyte-gated transistors [8][9][10][11]. Graphene, as a nearly perfect 2D crystal free of the structural defects [12][13] shows ballistic transport because of its significant high electron mobility at low temperatures, which can
  • can satisfy the major requirements of a channel in electrolyte-gated transistor (EGFET) devices due to its ballistic transport, high conductivity, and strong mechanical and elasticity properties. An analytical modeling of the graphene capacitance as a major characteristic of EGFET is studied in this
  • these days. Geim, in 2004, demonstrated that the six-membered rings are the basis of all carbon materials in electrochemical biosensor research [7]. The remarkable electrical properties of graphene such as fast electron transport, tunable energy bandgap, high thermal conductivity, and ballistic
PDF
Album
Full Research Paper
Published 09 May 2014

Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

  • Adrian Iovan,
  • Marco Fischer,
  • Roberto Lo Conte and
  • Vladislav Korenivski

Beilstein J. Nanotechnol. 2012, 3, 884–892, doi:10.3762/bjnano.3.98

Graphical Abstract
  • , including metals, is expected to enable a variety of new ballistic transport and photonic devices, such as spin-flip terahertz lasers [15]. In this work we extend the practice of colloidal lithography to produce large-area, near-ballistic-injection, sub-10 nm point-contact arrays and demonstrate their
PDF
Album
Full Research Paper
Published 19 Dec 2012

Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography

  • Farhad Larki,
  • Arash Dehzangi,
  • Alam Abedini,
  • Ahmad Makarimi Abdullah,
  • Elias Saion,
  • Sabar D. Hutagalung,
  • Mohd N. Hamidon and
  • Jumiah Hassan

Beilstein J. Nanotechnol. 2012, 3, 817–823, doi:10.3762/bjnano.3.91

Graphical Abstract
  • ), quantum ballistic transport, and novel structures such as bulk planar junctionless transistors (BPJLTs) have also been investigated [3][4][5]. The idea behind the JLTs, or pinch-off transistors [6], is to simplify the source/drain engineering by removing the conventional junctions, and at the same time
PDF
Album
Full Research Paper
Published 03 Dec 2012

Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

  • Andrea Capasso,
  • Luigi Salamandra,
  • Aldo Di Carlo,
  • John M. Bell and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2012, 3, 524–532, doi:10.3762/bjnano.3.60

Graphical Abstract
  • motivation for the replacement of PCBM with CNTs was an expected increase in electron mobility due to ballistic transport in the CNT phase. Besides, microscopic studies proved that in a mixture of P3HT and CNTs, the polymer self-assembles and wraps the carbon nanostructure, generating a bulk heterojunction
PDF
Album
Full Research Paper
Published 19 Jul 2012
Other Beilstein-Institut Open Science Activities